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IT IS well known that for a wide class of materials with 
memory (we will call them relaxation materials), the heat 
conduction can be adequately described only by the gener- 
alized heat conduction equation [ 1,2] 

* 
T$+;= uAT 

where T = T (x,y, Z, t) is the temperature in space-time point 
x, y, Z, t ; a is the coefficient of the thermal diffusivity ; and 
z is so-called relaxation time. Equation (I) can be rearranged 
in the form 

which represents the dissipative wave equation with the speed 
of propagation of the thermal disturbance determined as 

a 
w= -. J T 

(3) 

Since the equation of heat conduction (1) contains two 
functionally connected parameters a and r, one has to modify 
the formulas needed for the experimental determination of 
the thermal diffusivity a of the relaxation materials which 
generally differ from the known formulas derived from the 
standard heat conduction equation, i.e. the equation 

The purpose of this note is to derive the formulas for the 
temperature field in samples of relaxation materials ; this is 
necessary in order to determine experimentally the values of 
the thermal diffusivity and, simultaneously, the relaxation 
time by non-stationary experimental methods, especially by 
the well-known flash method [3]. 

In what follows we assume the standard experimental 
arrangement commonly used in the Aash method of measure- 
ment of the thermal parameters. We consider a sample of 
relaxation material with thermal conductivity k and relax- 
ation time r. The sample has the form of a slab with 
thickness L. Let the initial temperature distribution be 
uniform, and the sample be adiabatically isolated from the 
ambient. The temperature rise @(x, 2) due to the absorption 
of an instantaneous pulse of energy Q at the time I = 0 on 
the front face x = 0, can be found as a solution of (1) in the 
form 

(5) 

with the boundary conditions typical for the flash method 

B(x,O) = 0 (6) 

de 

at,lo= 0 

ae 
- =-p(r) ax r=* 

au 
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(9) 

If we apply the Laplace transformation to (5) by taking into 
account the initial conditions (6) and (7) we obtain the 
following subsidiary equation 

,- 
u&t&ir+l)ti=O; O<x<L 

with the conditions 

(10) 

de Q dfl _._ 
dx ,v= o 

= - - and - 
k dx *CL = 

0 (11) 

where 

s 

3c( 
e= 0(x, t) exp {-pt} dt 

0 

is the Laplace transform of the temperature rise 1) (x, t). The 
solution of (10) with respect to (11) is 

e(x,+~[l-exp(-2&)]-’ 

where 

(13) 

Since for the flash method the solution of (5) is the most 
interesting for small values of time, we expand the RHS of 
(12) into a series 

JC?q)=f jJ a exp [-q(ZmL+x)] 
m-0 { 

fexp [-q(2mLS2L-x)] 
> 
. (14) 

Using the Table of Transforms [4] we can find the inverse 
transformation of (14) : 

1_((2mL+2L--x)2T 

at2 

(1% 
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NOMENCLATURE 

;f 
thermal diffusivity Greek symbols 
thermal conductivity 7 relaxation time 

L thickness of the sample UJ speed of propagation of the thermal 

Q amount of energy of the pulse disturbance 
t+ time needed for appearance of the front of tI(x, t) temperature rise 

temperature disturbance in the plane x = L 0 Laplace transform of the temperature rise. 
T temperature. 

where I&) is the modified Bessel function of the first kind, 
zero order, and p(t - t’) is unit step function : 

p(t-t’) = 1 t 1 t’ 

=o t<t,. 

In the limiting case when r + 0, (5) assumes the form of the 
solution of the standard heat conduction equation 

--aa2e=o. O<x<L 
ae 
at a2 3 ’ .. 

and the temperature rise distribution goes over the well- 
known formula [5] 

f3(x,t)=$ g {exp[-(2m~a~x)‘] 
BmO 

[ 

(2mL+2L-x)2 
+exp -___~ 

4at II 
The first term in (15) describes the flow of heat from the 
point x = 0 to the right, and the second one describes the 
waves reflected from the plane x = L and moving to the left. 
The equilibrium temperature rise due to input of heat Q 
.I mm2 is Q/pcL, where p is the mass density, and c is the 
specific heat capacity of the sample. If we want to express the 
temperature rise in the sample as a fraction of this equi- 
librium temperature, then using the relation between the a 
and k (k = pm), we can rewrite (IS) into dimensionless form 

+I0 :, (J l- (2mL+2L-x)25 

at’ 

(16) 
From the experimental point of view the dependence of the 
temperature on time in the plane x = L is of great interest. 
This dependence in our case can be written in the form 

Since in (17) there are two free parameters-thermal diffu- 
sivity a and relaxation time r-for their simultaneous deter- 
mination, it is advantageous to proceed as follows. 

First, we determine experimentally the speed of propa- 
gation of the heat disturbance o from the condition that 
e(L,t) should be zero for t < L/w, and so o is determined 
by the ratio o = L/t*, where t* is the time needed for appear- 
ance of the front of temperature disturbance due to flash in 
the plane x = L. According to [3], equation (17) can be 

rewritten in the form 

B(L,t)=eexp -g :I0 
( > m=o 

_ (2m;2:~L*)p[ t- i%$] (18) 

in which only the thermal diffusivity a occurs. This can be 
determined from (18) if we know the experimental depen- 
dence of the temperature on the time in the plane x = L. 
Having the values of a and w, we can then calculate the value 
of the relaxation time from equation (3). 

This makes it possible to determine the value of thermal 
diffusivity as well as the relaxation time for relaxation 
materials by means of the flash method. 

Let us make some remarks to the possibility of the 
measurement of the quantity w. According to Lykov [6] the 
typical value oft for solids (metals) is of the order of 10-r’ s. 
For example the speed of propagation of thermal disturbance 
of steel is equal to 1800 m s-‘. Generally the speed w of the 
materials with phonon heat conductivity is approximately 
equal to their velocity of the sound. The value of o for 
thermal insulating materials, e.g. porous or dispersion 
materials, is even less than that in the steel. Moreover, the 
speed o of the materials in which phase transitions or chemi- 
cal reactions take place, is further decreased due to the 
finiteness of the propagation of the front of phase transition 
or chemical reaction. 

If we consider the thickness of the sample L N lO_*m 
then, under the plausible assumption that o N lO’ms_‘, 
the time t* is approximately equal to lo-‘s. Clearly it is 
practically impossible to register such a quick change of 
temperature with the usual experimental methods at room 
temperature. However, at sufficiently deep temperatures this 
thermal change can be reliably detected and registered with 
a relative precision of 10-j by means of the sensors and 
detectors described in the works of Gutfeld and Nethercot 
[7]. This sensor consists of a thin metal layer which is at a 
temperature near to the transition to the superconducting 
state. By means of the measurement of the electrical resist- 
ance of this layer one can detect the time t* with high pre- 
cision because the time constant of this sensor is of the order 
of IO-* s [7]. We see that it is possible to measure the speed 
of propagation of thermal disturbance under the before- 
mentioned experimental conditions. 

Using the new and finer sensors, which are under con- 
struction, it should also be possible to detect w at con- 
siderably higher temperatures. 
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INTRODUCTION 

BtiOvANcY-induced convection is of great importance in 
many heat removal processes in technology. In particular, 
for low-power-level devices, it may be a significant cooling 
mechanism. In such cases, the transfer surface area may be 
increased, as in fins, for au~entation of heat transfer rates. 
In the thermal analysis of vertical fins, it is usually assumed 
that the fin is isothermal. This may be a reasonable assump- 
tion for short fins with high thermal conductance. However, 
long fins with low conductance would not be isothermal and 
for the estimation of heat transfer rates from such fins, the 
conjugate problem of conduction within the fin has to be 
solved simultaneously with natural convection in the ambi- 
ent fluid. A numerical solution of this problem for a short 
plate fin in a fluid with Pr = 0.72 was obtained bv Soarrow 
and Acharya [I]. Lock and Gunn [2] developed a~similarity 
solution for a short, tapered fin in a fluid of infinite Prandtl 
number. Recently, Kuehn et al. [3] presented a similarity 
solution for the conjugate free convection heat transfer from 
a vertical fin of infinite length and obtained results for a 
uniform conductivity plate fin as a function of the fluid 
Prandtl number. 

In the present work, an integral analysis has been carried 
out to obtain a closed-form solution for the heat transfer 
rates from a long, vertical fin with variable conductivity 
and/or thickness. The solution for the special case of fin with 
constant thickness and conductivity has been compared with 
that of Kuehn et al. [3] and a close agreement confirms the 
utility of the proposed equation. 

ANALYSIS AND RESULTS 

Consider an infinitely long, vertical fm as shown in Fig. 1. 
The coordinate system used is also depicted in this figure. The 
base of the fin can be selected arbitrarily if the corresponding 
temperature Ts is known [3]. The fin is at a higher tem- 
perature than that of the ambient fluid. The flow is assumed 
to be laminar. The Boussinesq approximation for the density 
variation is employed and the other Buid properties are taken 
to be constant. Further details of the problem can be found 
in ref. [3]. 

In this paper the case of the fin being hotter than the 
ambient fluid is explicitly considered. However, the analysis 
as well as the results also apply to the case of the fin being 
colder than the bulk fluid. In the latter case, the fin is to be 
inverted. 

The conservation equations for the fluid in the integral 

r- v,V 

T= Tb >T, x>u 
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FIG. I. The physical model. 

form are as follows [4] : 

and 

Energy balance for the fin with varying thickness and/or 
conductivity yields : 

(3) 

Here the thin fin approximation is employed. The boundary 
conditions for the fin are : 

T, = T,, at X = X,, (4a) 

T,= T, asX+co. (4b) 

The temperature variation of the fin is taken as the power- 
law of the type [3] : 

(Tr - 7-m) = (Tb - T&Y/&)“. (5) 

The following velocity and temperature distributions are 
assumed for the fhrid [4] : 

u/u, = (Y/6)(1- Y/S)2 (6) 

(T- T,) = (TF - T,)(l - Y/S) 2. (7) 

Equations (l)-(3) are solved by using the following power- 
law variations for the boundary-layer thickness (S) and ref- 
erence velocity ( Ur) : 

6 = c,xP’ (8) 
iJ r = --c YP2. 2, (9) 


